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ABSTRACT:

We introduce the operators: “cubic bipolar intuitionistic fuzzy prioritized weighted averaging
aggregation operators (CBIFPWA)”, “cubic bipolar intuitionistic fuzzy prioritized weighted
geometric aggregation operators (CBIFPWG)”, “cubic bipolar intuitionistic fuzzy prioritised
averaging aggregation operators with priority degrees (CBIFPDA)” and “cubic bipolar intuitionistic
fuzzy prioritised geometric aggregation operators with priority degrees (CBIFPDG)” in this work.
Additionally, we provide a better score function as well as accuracy function for comparing the
cubic bipolar intuitionistic fuzzy numbers (CBIFNs) and examine the utility and efficacy of these
operators in MCDM issues.
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INTRODUCTION:

In MCDM, several people choose at the same time from the possibilitiesin front of them. Because of
the growing complexity of the environment in choice analysis and the circumstances themselves,
decision makers are occasionally persuaded by numerical information to provide decision making
information. As a result, Atanassov [1] demonstrated the intuitionistic fuzzy set (IFS) by extending
the Zadeh’s [2] fuzzy set. The IFS was further extended by Atanassov and Gargov [3] and came up
with the concept of interval-valued intuitionistic fuzzy sets (IVIFS), and outlined the fundamental
IVIFS algorithm. Inevitably, both IFS and IVIFS successfully addresses the real-world problems that
allow for ambiguity; nonetheless, further research is necessary to find a substitute that both possesses
IFS and IVIFS.

In order to cope with this problem, Zhang [4, 5] presented an entirely new fuzzy set which was
represented as Bipolar Fuzzy Set (BFS). Wei et al. [6] put forward the idea of interval-valued bipolar
fuzzy set (IVBFS) in order to broaden the scope of BFS. The notion of a bipolar intuitionistic fuzzy
sets, which Ezhilmaran et al. [7] put forward as an extended form of bipolar fuzzy set. With the goal
of improving the domain of membership degrees in fuzzy sets, Jun et al. [8] created the idea of a
Cubic set and its related operations, which is an extended form of a FS and IVFS. Kaur and Garg [9]
expanded the idea of the CFS to create the cubic Intuitionistic Fuzzy Sets (CIFS), where the degree
of rejection was also included in the analysis. One effective way to discern between options is to use
the aggregation operators method under various operations.These operators met a number of
significant requirements and are beneficial in a variety of domains, including as business, finance,
economics, etc., We frequently encounter situations, though, in which there is a clear prioritizing link
between the points need to be combined. Using IFSs, Yu and Xu [10]proposed priority aggregation
operators.

In order to address a wide range of challenging issues, the researchers have effectively implemented
numerous optimization strategies. When it comes to accurately describing the occurrence of
evaluations or assessments, the concept of a simple BIFS falls short due to its limited informational
scope and lack of capacity to capture the occurrence of ambiguity and uncertainty, particularly in
situations where decision-making involves delicate cases. In a similar manner, the notion of an
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interval-valued bipolar intuitionistic fuzzy set is likewise inadequate for revealing the experts
opinions that depend on the characteristics of the options. In order to do this, we had introduced a
unique setwhich is an extension of CBFS[11] referred to be as Cubic Bipolar Intuitionistic Fuzzy
Sets (CBIFS)[12],. Here we nowintroduce the concept of cubic bipolar intuitionistic fuzzy prioritised
weighted averaging aggregation operators (CBIFPWA), cubic bipolar intuitionistic fuzzy prioritised
weighted geometric aggregation operators (CBIFPWG), cubic bipolar intuitionistic fuzzy prioritised
averaging aggregation operators with priority degrees (CBIFPDA)” and “cubic bipolar intuitionistic
fuzzy prioritised geometric aggregation operators with priority degrees (CBIFPDG)” for resolving
issues with multi-criteria decision making (MCDM). The fundamental definitions that are not shown
here can be found in [1] to [11].

Definition 1.1. [12] Let /[0,1] be the set of all closed subintervals of[0,1]and I*[—1,0] be the set of
all closed sub-intervals of[—1,0]. A cubic bipolar intuitionistic fuzzy set (CBIFS) €' on X can be
described asC! = {(x,B'(x), B! (x))}: x € X}where Bl(x) =
(et GO, i GO, [t (), gt (0], [951 (), 957 ()], [19B, (x),95'(x)]}be  an interval-valued
bipolar intuitionistic fuzzy set (IVBIFS) and B!(x) = {uBI(x), Ugt (x),ﬁgl (x),951(x)} be a bipolar
intuitionistic fuzzy set (BIFS) A cubic bipolar intuitionistic fuzzy element (CBIFE) can be
symbolized by &' = {{[ut}, ii] ugh ], (955, 0780, 195, 05T L b, s, 951, 03}

Definition 1.2.[12] Consider Cl =
{{[Mglk' .uglk] [Mglk' Mglk] ['9311{' glk] ['931}(,' glk]} {.uglk' Mglk'ﬁglk' 371}(,}}' (k =12, ...,n)to be the
collection of CBIFEs and let the weighted vector be W = {w;, w,,...w,}” such that Y }_, wy =
land 0 < wy, < 1. The CBIFWG operator by the mapping F : CL - €' as:

CBIFWG(é{.éé.-- L) = ({[IMTp=y (it )™ TRy (it "][ —(1 - TR, (1 -

sz))‘”") -1~ [Te=1(1 — (—pgh )™ )] [1-TTk=a(1 -
BIk)mk k=1(1 -
‘Blk ] [— Hk 1( '9731k) 1( ﬁ‘Blk)mk]} {Hk 1(‘uBlk)
(1- e1(1 = (—ugn )™, 1 = [Thoq (1 -
1) = ME=a(=95n) " (1)

Definition 1.3. [12] The Score function for CBIFEs can be computed as,

s(é1) = {4 + [Hzﬂk (x) + ‘uBIk (O] + [Hgllk () + pgiy (0] - [ﬁBIk (x) + '9531k (x)]}
[1931k (x) + 19531,( (x)] +2+4 '“;311( (%) + pgr () — 19531,( (%) — Ig1,, (%)

)

where S(C') € [0,1]. If S(€]) < S(C)), then €] < C} and if S(C)) > S(C1), then Cf > C4.

Definition 1.4. [12] The Accuracy function for CBIFEs can be computed as,

A(E1) =2 {4 + [z () + w35 (O] = [0, (0) + w5h (0] = [950,(0) + 05 (x)]} 3)
T 12

+[951, () + I8 ()] + 2 + 'uBIk (%) = g (%) = 927, (%) + 91, (%)
where A(C") € [0,1]. IfA(C]) > A(C}), then € > €} and if A(C]) = A(C}), then €] = C}.

CUBIC BIPOLAR INTUITIONISTIC FUZZY AVERAGING AGGREGATION
OPERATORS WITH PRIORITY DEGREES :

Here, in this following section, we introduce thecubic bipolar intuitionistic fuzzy prioritized
weighted averaging aggregation operators (AOs) and cubic bipolar intuitionistic fuzzy averaging
AQOs with priority degrees.

Definition 2.1.Consider Gl =

{{[ﬂBlk’“ﬂlk] ['uBIk"uBlk] [1931,(; Blk] [19Blk: Blk]} {#Blk, #Blk' 19311(’ Btlk}}(k = 1,2,~...,n)tf) be the
collection of CBIFEs. Then we defined the CBIFPW A operator by the mapping F : C} — € as:
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and t]-

CBIFPWA(CY,CL, ...,Cl) = Gl @ G} @ ... D r,C}, (4)wherer; =

]_[{;115(67’{() ,j = 2,3,...,n, where S(C}) be the score function of the k** CBIFN
andt; = 1.
Definition 2.2.Consider Cl =

{{[ﬂBlk’“ﬂlk] ['uBIk"uBlk] [19Q1k’ Elk] [19Blk: Blk]} {#Blk, #Blk' 19311(’ Btlk}}(k = 1,2:,’”,)1:0 be the
collection of CBIFEs. Then we defined the CBIFPDA operator by the mapping F : CL —» C! as:
CBIFPDA(CL, G, .., L) = 1 DGl @ 15, DEL @ .. ® 7, DGl

(d) ~ ~
(5)wherer; (D = Zﬁtl @ and t; @ = H (S(C,i))d" ,j =2,3,..,n,where S(C.) be the score

function of the k** CBIFNand t; = 1.
Theorem 2.3.Consider Cl =

{{[MBIk"uBIk] [“Blk'“zzlk] ['9311(,' Ot ] ['931;(' Ot b gt Bgtior O ptier O I3k = 1,2~,...,n)~to be the
collection of CBIFEs. Then we defined the CBIFPDA operator by the mapping F : CL —» C! as:
CBIFPDA(é{, él,..,¢6L) = & DE! @ 4y (D] @ 7 @@!

=U1- 1_[(1 ‘u‘Blk e )' 1—[(1 HBIk 1_[( Hg}k yk(d),
_1_[( #Blk)/rk ] [1_[(‘97311()4% 1_[( BIk i ]' [-(1-
k=1

[ ] - oghn, ~ —ﬂ(l—(—ﬁg&)w@)n,{l
k=1

— 1_[(1

7D 7@ 7@
#Blk) A= 1_[( “B’k) 1_[( B’k)
[Mi=s(1 = (950D} ©

Proof. We demonstrate the aforementioned theorem by mathematical induction.
Letn =2,
(d)

D] = ({[1 - (1 —pit, |
S CE ) L W e’y M G ) W N (o'
O3 =1 = (1 = (=05, )Y, =1 = (1 = (=05 N ) (1 — (1=
)™ -(—u;,y’* L @85) ™ = (1= )

2(d)
15 DEL = {({[1 - (1 - puih, ,1

(@ @ —uy72@ 9F ‘V“z(d)
- (1 7312 ] [~ ( ”73112) '_(_”7312) ()] [( 73112) @
L-a-(1- (—ﬁB,z)()d)rz(d) '_(1 (1 — (=05 ))’Vz(d) Ba-(1- ngz)” ’
—(mzn) ™ 5) ™~ = (1= (=5, )Y

i
221:1 tk

@

(193’ 2
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(d)él @D r (d)éé
= {{ 1 - ((1 .uth) (1 :ulglz)MZ( )), 1
7, (@)
- ((1 311 1 (1
. @ | @ NG _u C o+ yd )
_ﬂglz [ (( ﬂBh) (_ﬂglz )I_((_ﬂgh) (_ﬂglz [((19311) ( 312) l
)™ (82 = - (1= =85k (1 - (- 19312))“2(‘”) -
- (@) (1 B ((;)91311))“( )(1 - ( 197312))”"2( :
Td)((l - ﬂgh)/’ﬂl (1 ﬂglz)yz )l @
=)™ ) (3™ (030 -
- (1 - ( 19311))/r1 (1 - (_'92_;12))¢2 )}}

@ @ 15D = {1~ 1_[(1 “Blk e 1= 1_[(1 BIk e ] [ 1_[( nuglk yk(d).
1—[ BIk)fk( )] [1—[('9311\',)” 1—[ B’k)fk ] -1
- ]_[(1 = (=0, <1
k=1

2

B 1_[( Blk))yk(d)>]’ t
k=1
— (1
2 k=1 2
(@) (@) (@)
DIt [ (C7=R ] [ [CAR R
k=1 k=1

2
- [ = s m
k=1

3 {1

N

It holds forn = 2.
Assume Equation. (6) holds true forn =7, (i.e.)
CBIFPDA(é{ i, ..,CH = 1 DE @ 4, DEL D .. ® @¢!

={{[1- 1_[(1 BIk ”rk( 1= 1_[(1 — Ugh e )] [- 1_[( “B’k)yk( )'
_1—[( MBIk)/rk( )] [1—[( B’k)ﬁrk 1—[( Blk)yk ] -1 -
k=1
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T r

[ [0 - ot -a -] |- coginma

k=1 k=1

_ 1_[(1
MBlk)yk( ) A= 1_[( 'U‘Blk)/rk( ) 1—[( B%)ﬁrk( ) ,—(1 =
]—[(1 — (=95 )

We now need to demonstrate that the equation.(6) is valid forn = r + 1.
CBIFPDA(C],C, ... é;H) =rDEI D r, Vel D ..® . YC. D 7., VEL,,
T

={{[1 - 1—[(1 - B,k)”‘ 11— 1_[(1 B,k)”
k=1
- H(_#;}k)m(d)’_l—[( Blk)yk ] [1—[( B’k)yk 1—[( B’k)¢k()
k=1 k=1

r

-] - oy~ (1 -] Ja- (—ﬂ;&))“"(d)>]' :
k=1

k=1
r

_ 1—[(1

k=1
T T
(@) (@) (@)
- nu;;_lk)ﬁrk ’ | |(_“3jlk)¢k , | |('9;Ik)¢k T

- 1—[(1 (=)™ @

@ . re1(@
({01 - (- agh) ™ 1= (1 u;%‘m)“"“ ][ (=tghe)

_( MBIr+1)¢T+1 ] [(ﬁ31r+1)¢r+1 ('9131r+1 ¢r+1 ]' [_(1 - (1 - ('93?11r+1))4ﬂr+1(d)); _(1

(d)
- (1 - ( 031r+1))¢r+1 }r{l
(@]

@
- (1 - ﬂglrﬂ)/mﬂ ) _(_‘uglrﬂ)’r”l (ﬁBIrH)M " ,—(1 =
- d
(1 _ (_ﬁBlHl))wﬂ( )}}
r+1 r+1
(@
{1- 1_[(1 - Blk - 1_[(1 B’k ’[

r+1 r+1 r+1

- U( B’k)yk() 1_[( Blk)yk ][1_[(1931,( ,
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r+1 r+1
1_[(19311( 7l )]’ [—(1 - 1_[(1 — (-ﬁg}k))frk(d)) —{
k=1
r+1
- ﬂu (IHN {1
r+1

- a
=t r+1 r+1
() (@ (@D
- i)™= )™ ] )™ —a
k=1 k=1

r+1
[ - om0

k=1
The above proves that eqn. (6) holds for n = r + 1. Then,
CBIFPDA(C],C3, ..., é{l)

B {{[1_1_[(1 'uBIk e 1_1_[(1 Blk i ] [_1_[( ﬂ;llk Mk(d).
Tt u Jeos™" ] Jeos™"hi-a -
k=1

[ - coginm=, (1—1_[(1 (=958 )™, (1

- 1_[(1

7D @D 7 @D
—u3n)™ = ﬂ( Ko ﬂ( a) ™ —a-

ra(1— (=05, ) o

Example 2.4. Let €/, €}, €} and €} be the four CBIFEs as:

¢! = {{[0.23,0.43],[-0.33,—0.23],[0.33,0.47],[-0.52, —0.41]}, {0.35, —0.29,0.40, —0.47}}
¢! = {{[0.17,0.28],[-0.63, —0.56],[0.46,0.51], [-0.26, —0.19]}, {0.20, —0.60,0.50, —0.23}}
¢! = {{[0.37,0.45],[—0.71,—0.55],[0.50,0.52], [-0.23,—0.16]},{0.41, —0.58,0.51, —0.21}}
¢} = {{[0.50,0.60], [—0.40, —0.30], [0.31,0.39], [-0.50, —0.40]}, {0.55, —0.35,0.36, —0.45}}
Calculate the CBIF AO and consider the priority degree as d = (2,1,1).
Solution: Now, we compute the score for each CBIFEs:
S(€¢H =0.5300,5(C}) = 0.3392,5(C%) = 0.3717,5(C}) = 0.5742
t; = 1,t, = 0.5300,1t3 = 0.1798,t, = 0.0668
7@ =0.5629,7,@D = 0.2983,75@ = 0.1012,7,® = 0.0376
By using eqn. (5), we get
CBIFPDA(C{,C},CL, Ch)

= {{[0.24,0.40],[—0.44,—0.33],[0.38,0.48], [—0.43,—-0.33]},{0.32,—0.39,0.44,
—0.38}}

Theorem 2.5.Consider Gl =

{{[MBIk’HQIk] [‘LlBlk"LlBlk] [ﬁg}k’ Blk] [ﬁﬁlk’ Blk]} {‘Llﬂlk’MBlk’ ﬁBlk’ lek}} (k = 1,2; ...,TL)'[O be the
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collection of CBIFEs. Then, the CBIFPDA operator satisfies the idempotency property (i.e) if G} =
¢!, vk = 1,2, ...,n we have CBIFPDA(C{, €}, ...,CL) = C".

Proof.By considering eqn. (5), we have

CBIFPDA(C"{, él, ... é,’l) 7 (DE] ea 17, DE D ... D 1, DEL

d) ( d)

51
t(d) 1@ t(d)c269 @ t(d)c

2
tl(d) . t @ . 5t
d
_ k=1tk( ) 51
T yn t, @
k=1"‘k

=1.¢!
CBIFPDA(CL,C),...,CL) = C'o
Theorem 2.6.Consider Gl =
{{[#Blk'“Blk] [ﬂBlk:ﬂBlk] [19Blk' Blk] [19Blk' B’k]} {uBlk’#Blk'ﬁBIk' I;Ik}} (k = 1,2,...,7’1)38 ~the
collection of CBIFEs. Then, the CBIFPDA operator adheres the monotonicity property (i.e.) if Cf <
€L, Vk =1,2,...,n, we get CBIFPDA(E!, &}, ...,GL) < CBIFPDA(E!', ¢}, ..., EL).
AN
— n —
< 1 Hk=1 (1 MBI;{)

@D

@

Proof. If uyi, < 'y, then 1= TTioy (1 — pgi,
/Vk
Similarly, if p77, < u+” then 1 — [Ti=1(1 — ppty) < 1—TI1ky (1 - ,u;b;‘c)

IC ) /yvk( )
Tk n -1
If'uBlk Sk 1’ then — 1( B’k k=1 (_HBI;{)
”’k(d) ”"k(d)

Similarly, if gl < w7, then — [Tiy (- uB,k | (_”;i)
(d)

Now, if '9;31k < 19+ , then []R- (1931,()” <Ilx= ( ) *
@D @D
Similarly, if 947, < 19+ , then []} 1(19B1k <TIr=1 (ﬁ;}i)
_ (d) - (d)
e <9 ,then - (1 — ey (1 — (—054 ) ) <-(1- g=1(1 - (—aBll;()yk )
Similarly, '9;31k < 1913’2,’ then — (1 - 2:1(1 - (—ﬁgﬁ{))rk(d)) < —(1 -1k (1 - (—ﬁ;ﬁ())rk(d))

e

Now, if 9t

(@
Ifuglk < ”+1;<’ then 1 — [Tp_(1 — u;k) <110, (1 — ,u;;c)
@

_ (@ ) _
If.ugglk 7 Bk’ then — [T- 1( -uzy’k) k=1 (_'uBI;f)
+ ’Vk( n + /y'k(d)

— (ad) - (@)
If 9, < 0 " then - (1 — s (1= (95 )7 7) < =1 = Ty (1 - (—19?3,;())4% )
Finally, we get
CBIFPDA(C], €S, ..., Ch)

S | (=R § (=St § (ERC
k=1
_1_[( #Bl")m ] [1_[(1973’1()4% 1_[( Blk fk(d)], [-(1 -
k=1
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n n

[ 0= omn, —a -] |0 - oin o

k=1 k=1

_ 1—[(1
7@ 7@ 1 @D
— )" 1_[( ane) 1_[( a) L —(1 -
ﬁ(l = (=9 )

n

7 @D 7D
<n-| [(-wh)™ -] [(-wt)" 1
k=1 n k=1 n n
(d) (d) @ (d)
-1 \"k —u Tk +l +u
- [ [Gmi)™ =] ] (i) Hﬂ ? (o) "
k=1 k=1 k=1
- -1
n n
- (1= o5 p.- <1— (1—(—19;;;))m<d>>],{1
k=1 k=1
n n n

(a) (@
(t-wt)™ =] [ )™ ] (o)™ -a
7:11 k=1 k=1
(

- 1_[ - (=07, DY

CBIFPDA(Cl, €}, ...,GL) < CBIFPDA(E!, G, ..., EL)
From the above, we have proven that the CBIFPDA operator satisfies the monotonicity property.o
Theorem 2.7.Consider ¢l =

{{[M;Ilkl Mglk] [‘LlBlk’ HBIk] [1931](! Blk] [ﬁglkl Blk]} {I’lBIkl MBIk'ﬁBlk' Btlk}} (k = 1121 ln)to be the
collection of CBIFEs. Then, the CBIF PDA operator satisfies the boundedness property.
Proof. We know that mln(yﬁlk) < l‘glk < max(uBlk)

(@) (d) (@)
ﬂm,;n(l ugh)™ 1‘[(1 ug)™ ﬂmax(l ugh)™
k=1

@
Then, mkln(l — T, (1 - “BIk) ) <1-ITR-.(1- uBIk)”rk < ml?x(l — M- (1 -
@
Hat) "
@ oy K@
Similarly, min(1 — Mh-a (1 — uii, ) <1 —[Tiea(1 — pgty < max(1 - [r.(1 -
@ )
Blk)

Now, mln( u;}k) = —u;llk = max(—,ugzlk)

(d (d) (d)
Tk Tk ’Vk
| |mm( i >| |( Hl | |maX( i)
(d)
Tk

Then, min(— [Ty (—45, e ) < Ty (—iph)™ <max( Mrea(—ugh) )
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@ @ )

Similarly, mln( [Thz 1( ,uBIk
Now, mln(ﬁBIk) <91

(d)
) < ~Mea(—wph) ™ < max(=TTfas(—uizh)

Bl < max(ﬂBIk)

”’k

(d) (@
Then mkln(ﬂ (19B1k ) < H (ﬁBlk < maX(H (19sz)

Similarly, min([Ti 1(1931,()” )<H 1(1931,()” < max([Tx- 1(1931,()”
Here mm( ﬁBIk)> —01 >max( 91

n

min (D(l - (=58)™ ) < ﬂ(l — oyt < m,?x(g(l — =9500)™

Then,  min— (1= [Toa(1 - (—ﬁ;}k))“"k(d)) < = (1= Taa (1 - =058 D7) < max— (1 -
n(1— (—193?},())“‘@)

Similarly, min — (1 =TTz (1 - (9580) ™) < = (1~ TMea (1 — (-85 <

max (1 — 1= 1(1 B,k))fk( ))

A 51m11ar computation says,
= (@) ~ (@) ~ )
. 7 7
min(1— [ [(1=s) ™ D = 1=[ [ —s)™ < maxi =] [(1-s)™ )
k=1 k=1 k=1
= ©) = (@ = 7 (@D
. -\ -\ - k
min(— ﬂ(—uﬁzk) “y<- n(—ugzk) < max(— 1_[(_,“311{) )
(a ) @D (d )
mln(l_[(ﬁBlk " ( Blk)/r = max(l_[(ﬁBlk e

min — <1 - 1—[(1 (= 19311())” ) s - (1 - 1_[(1 - (_191;11())”@)
k=1
@
<max—(1-| |(1-(9;))" )
k ( D B

From the above all inequalities, we conclude that CBIFPDA operator satisfies the boundedness
property.O

Theorem 2.8.Consider Cl =

{{[Mglklﬂglk] [.uBIk'.uBIk] [19311{' Blk] [1931}(,' Blk]} {ﬂglk'uglk'ﬁglk' glk}}(k = 1'2' "'!n) and
+1 +u =1 — + — _

el = ({0t L T i LT O T O e by 007 3 (K = 1,2, m)be

the two assemblage of CBIFEs and let ¢ > 0, then we have the followmg properties:

1. CBIFPDA(GL @ €[, Cs d El,..,.CL @ é{’) = CBIFPDA(CL, €}, ..,CL) ® Ef
2.CBIFPDA(9C{, ¢C5, ...,9CL) = ¢ CBIFPDA(C,C, ...,Ch)

3. CBIFPDA(@Cl @ €L, 0CL ® €l ..., 0CL @ C]') = pCBIFPDA(EL, G, ..., EL) @ €]
4. CBIFPDA(C! ® € ,CL ® ), ...,CL @ CL) = CBIFPDA(C],E}, ...,CL) ®
CBIFPDA(E!',EY, ..., 61

Proof. Proofs are trivial by the Definition 2.2.0

!



49 Vo0l.20, No.01(II), January-June: 2025

Pl‘0perty 2.9. Consider Gl =

{{[#Blk'”Blk] ['uBIk"uBlk] [19Blk' B’k] [197311(' B’k]} {uBIk”uBlk'ﬁBlk' glk}}(k = 1'22---:”)'[0 b~e the

collection of CBIFEs. Then, lim CBIFPDA(CL,C),...,Ch) =
(dl,dz,...,dn_l)ﬁ(l,l,...,1)

CBIFPWA(CL,EL, ...,Eh).
Proof. From given, (dq,d,, e dn-1) — (1,1,...,1), we get
t@ = [h (SEN)* ~ THZ1(SED) = hrandry @ = 7,
Then,
: 51 A1 51
Ayt (11, .1)CBIFPDA(61'CZI <df?2 @@l @@l
= (dl,dz,"”d1111_r5_)(1’1w1~)4~1 Ci® 4-2 C, D .0 r,'YC,
= 71C{ @ 75, @ .. D 1Cp

= CBIFPWA(EL,EL, ...,¢Hno
Remark 2.10.According to the above property 3.9. theCBIFPW A operator is a specific instance of
the proposed CBIFPDA operator. The CBIFPDA operator is therefore more general than the
CBIFPW A operator.

Property 2.11.Consider Gl =
{{[MBIR"UBIR] [“B’k'“zz’k] ['93110 Blk] ['931k' O}, {nuglkluglklﬁglkl O3 (k=12,..,n) to be
the collection of CBIFEs and S (C’k) #0,Vk, then we get

: 51 A1 1
L I IO)CBIFPDA(Cl, Ci,..,Ch) = (61 DCLD..DCL).

Proof. From giverl, (dy,dy, ...,dp—1) = (0,0, ...,0), we get
~ (@
4@ =2 wwm@=mmﬁW=y“@=imm

k=1

1 .
. - I
(dl,dz,...,d,lil_r?)—%o,o, CBIFPDA(Cl,CZ, ")_n @D — czea ea c

=ﬂ@®@®m@Qﬁ

Property 2.12.Consider Cl =

{{[ﬂglk:ﬂglk] [ﬂBIk.ﬂBIk] [1931k' 311(] [19311(' Z;Ik]} {ﬂglk:ﬂglk:ﬁglkv 3711(}} (k=12,..,n) to be

the collection of  CBIFEs and S (Cl) #0orS (Cl) *1, then we get
lim CBIFPDA(C],CS,...,Cl) = €.

d,—>+

Proof. Given that d; — +oo, for every k = 2,3, ..., n, we get
j-1

tk(d) — n(s(éllc))dk — (S(é{))+oo(5(éé))d2 (S(é{l))dn =0(v0< S(é{) <1
k=1

- @
Then, ¥7_, t,‘® = t; = 1 which implies 7@ = ﬁ =land 5@ = 0,forj =2,3,...,n
k=1"‘k
Hence, dlirr+1 CBIFPDA(CL, G}, ...,CL) = Clo
1=+

Remark 2.13.In contrast to the priority degrees of other CBIFNs, the priority degree &, of CBIFN is
extremely large when d; — +oo. This suggests that d;is highly significant. In this instance, d;
determines the aggregate outcome obtained by the proposed CBIFPDA operator.

Property 2.14.Consider Gl =
{{[#BIk'“BIk] [#BIk"uBIk] [1931k' Blk] [19311(' Blk]} {“Blk' ﬂBIk:ﬁBIk' 1;11(}} (k =12, ...,TL) to be
the collection of CBIFEs and S(C’k) =0V k =12,..r+1 and S(éiﬂ) # 1, then

; 51 B3I 51
(dl'dz'Mdr’drlgp_)(o‘o'...'O'HO)CBIFPDA(Cl, Ci,..,Cl) = (61 @CLD..DECLy).
Proof. Considering that(dy, d,, ..., d,, dy4+1) = (0,0, ...,0, +0),
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We have forevery k = 1,2, .7 + 1,
k-1

B B - - di—1
6@ = | [s@n® = sE@niseEhy® . (s@-))
j=1

- - - 0
- (SESENY° .. (S(Ch-v)) =
Now, fork =r+ 2,r + 3,...,n we have
k-1

. - - ~ dg—1
£, @ = n(s(c]!))dj = (SED)H(SE% .. (S(Ch-1))
j=1

> SEDPEEDN - () (3(6)) - (s(En) " =0

@__ %Y _ 1

Then,for k = 1,2,..7 + 1, we getZﬁzltk(d) = r + 1 which implies 7 @ andfor
=1
k @ — 0 -
=r+2,r+3,..,n wegetr; —W—m—o.

Hence,
; 51 51 51y _ 1 (51 51 51
(dl'dz'wdhdrl:gl_)(o‘o'...'O'HO)CBIFPDA(C’l, Ci,...Cl) = — (CIDELD .. Cl )

Remark 2.15.If (dy,dy, ..., dr, dry1) = (0,0, ...,0,+), then all of these CBIFNs C{,C3, .., Clyy
have a considerably higher priority than the CBIFNS Cr+2' CT+3, ..., C} and there is no prioritization
link between them. Because of this, the CBIFNs €1, €., ..., €L, are the only factors that determines
the aggregated value and they are given equal weightage in the aggregation process.

Property 2.16.Consider Cl =
{{[Mglk' .uglk] [Mglk' Mglk] ['9311{' glk] ['931}(,' glk]} {.uglk' Mglk'ﬁglk' glk}}(k = 1;2: ...,n) to be the
collection of CBIFEs and S (C ,Ic+1) #1lor0 then

: 31 A1 1Y 31 A1 31
oot drllgl(l . )CBIFPDA(C’l, Ci,...,C}) = CBIFPWA(CL, €L, ..., CL,1).
Proof. leen (d4, dz, v dyp,dry1) = (1,1, ...,1,4+0), we have for every k = 1,2, ..., v + 1,

@ = ]_[(5(6 )4 = (SENHSEN* .. (S(ek )

= (SEDSE . (SEh-1)) =t

Now, fork =r+ 2,r + 3, ...,n we have
k-1

~ . - . . dr-1
4@ = | € = sEHsEN® . (SE-))
|
: 51\\1 5171 sy 51 e 1)
> (SEINSEM .- (S(ED) (s(El)) - (s(Eh) "=
(@D
Then,for all k = 1,2,...,7r + 1, we haveZ"_ltk(d) - Yttt and 7@ = Zntl @ Z”kl o
k=1"'k k=1
£,(@ 0

Zh=1 (d) TRtk

andfor

allk =7+ 2,7+ 3 ...,n, we get (D = ~0,.

Therefore,
: 31 A1 1Y — 31 A1 31
(dl'dz'wdhdrl:gl_)(l‘l'"”1'+OO)CBIFPDA(C’l, Ci,..,Cl) = CBIFPWA(C},C4,...,Cl 1)

Remark 2.17.If (dy,d,, ...,d,,d,.1) = (1,1,...,1,4), then all of these CBIFNs €/,€.,...,Cl.,
have a considerably higher priority than the CBIFNs C’r+2,6’r+3, ...,CL and there is a normal
prioritization link between them. Because of this, the CBIFNs €}, €., ..., €L, are the only factors
that determines the aggregated value.
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CUBIC BIPOLAR INTUITIONISTIC FUZZY GEOMETRIC AOs WITH PRIORITY
DEGREES:

We now provide the ideas of the cubic bipolar intuitionistic fuzzy prioritized weighted geometric
AOs and the concept of cubic bipolar intuitionistic fuzzy geometric AOs with priority degrees in the
section that precedes.

Definition 3.1.Consider Cl =

{{[MBlk’lu‘Blk] [HBIk'MBIk] ['9311{: Blk] ['9311(,' B’k]} {.UBIk:HBlk,ﬁBlk, glk}}(k = 1,2,~...,n)tf) be the
collection of CBIFEs. Then we defined the CBIFPW G operator by the mapping F : C4 — C! as:

CBIFPWG(CLEL ...,C) = ¢l ® G @ ... ® CL ™ (T)wherer; = Znti t and tj =
k=1'k

H{;ll S(CL) ,j = 2,3, ...,n, where S(C}) be the score function of the k*"* CBIFN and t; = 1.

Definition 3.2.Consider Ci =

{{[ﬂBlk’“ﬂlk] ['uBIk"uBlk] [19Q1k’ Elk] [19Blk: Blk]} {#Blk, #Blk' 19311(’ Btlk}}(k = 1,2:,’”,)330 be the
collection of CBIFEs. Then we defined the CBIFPDG operator by the mapping F : CL - C! as:

31 A1 I 5771 5172@ 5170 (@) @
CBIFPDG(Cl, Cy .. Cn) C! ® C} K ..QCh 3 wherer % = ST 1,@ and

k= 1

(d) H (S(Ck))dk ,j =2,3,...,n,where S(C}) be the score function of the k** CBIFN and
t1 =1
Theorem 3.3.Consider Cl =
{{[MBIR"“BIR] [MBIk’MBIk] [1931,{, glk] ['9311(,' Blk]} {.uglk: MBIk’ ﬁglk' Btlk}}(k = 1,2, ...,n)to be the

collection of CBIFEs. Then we defined the CBIFPDG operator by the mapping F : €L —» €/ as:
51 Al ; 5@ @ -
CBIFPDA(Cl, 62, ., Ch) =01 ® E} R ..Q C}

n

- Jos” H(w“"‘ v Jo -y
—(1- g(l Blk )yk(d) 1_[(1 ﬁBIk ),1
_ 1—[( .
o)) (ﬁ( 52)™ ) (l—[( 521y

{1_[( Blk)yk( ) (1 N 1—[(1 (= MBIk))y (d)> 1- 1—[(1 ﬁBIk)yk(d)'

~(Ties (93) ™ ©)
Proof. The proofis comparable to Theorem 2.3.0
Theorem 3.4.Consider é,i =

{{[ﬂglk:ﬂglk] [ruBIkuuBIk] [1931}(' 311(] [19311(' 311(]} {“glk:ﬂglk:ﬁglk' £1k}}(k =12, ...,n)as the
collection of CBIFEs. Then, the CBIFPDG operator encounters the idempotency property (i.e) if
Cj = €', vk = 1,2,...,n we have CBIFPDG(C], €}, ...,C}) = €.

Proof. The result is comparable to Theorem 2.5.0

Theorem 3.5.Consider Gl =

{{[#Blk’ 31](] [#Blkl Blk] [19ﬂ1k’ 31](] [19ﬂ1k’ ﬂlk]} {#Blkl BlklﬁBlkl Btlk}} (k = 1r21"-1n)as the
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collection of CBIFEs. Then, the CBIFPDG operator meets the monotonicity property (i.e.) if G} <
€, vk = 1,2,...,n, we get CBIFPDG(C}, €}, ..., €L) < CBIFPDG(C! €Y, ..., EL).

Proof. The proof is equivalent to the Theorem 2.6.0

Theorem 3.6.Consider Gl =
{{[Mglk' glk] [Mglk' Blk] ['9311{' glk] ['931}(,' glk]} {.uglk' Blk'ﬁglk' 371}(,}} (k = 1'2' ...,n)to be the
collection of CBIFEs. Then, the CBIFPDG operator satisfies the boundedness property.

Proof. The proofis in contrast to Theorem 2.7.00

Theorem 3.7.Consider Gl =
{{[iuBIk’H"BIk] [ﬂBIk':uBIk] [1931k' ‘Blk] [1931k' Blk]} {I'LBIkHuBIk'ﬁBIk’ Ui} (k=12..,n) and
Gl = (I i H L L i L IO 0L [0 0T (i i 0% 97 ) e = 1.2,0m)
be the two assemblage of CBIFEs and let ¢ > 0, then we have the following properties:

1. CBIFPDG(C! ® €',CL ® €I, ...,6L ® €I') = CBIFPDG(EL, G}, ...,CL) @ Ef
2.CBIFPDG(@Ci, ¢Cs, ..., 9Cl) = ¢ CBIFPDG(C],C4, ..., Ch)

3. CBIFPDG(pCl ® €I, ¢Cs ® I, ..., pCL ® 1) = wCBIFPDG(EL,EL, ..,CL) @ €I

4. CBIFPDG(Cl ® €I',¢L ® €L, ...,CL ® EL) = CBIFPDG(EL, 6}, ...,6L) ®
CBIFPDG(C! GV, ...,¢1

Proof. Proofs are trivial by the definition 3.2.0

Property 3.8.Consider Cl =

{{[Mglk' .uBIk] [Mglk'uglk] ['9311{' Blk] ['931}(,' Blk]} {.uglk' Mglklﬁglk' 1;1}(,}} (k = 1,2~,...,~n)to ]36 the

collection of CBIFEs. Then, lim CBIFPDG(CY,C},...,Cl) =

o ) (d1,dz,0dn-1)~>(11,.,1)

CBIFPWG(CI,C}, ...,Ch).

Property 3.9.Consider Cl =

{{[MBIk"uBIk] [“Blk'“zzlk] ['9311(,' UM ['931;(' Ot b (gt gt Ot O 3 (k = 1,2,..,m) to  be

the collection of CBIFEs and S (C’k) #0,Vk, then we get
: 51 A1 51\ _ 1(A1 51 51

L I ’O)CBIFPDG(CI, €y nCr)=-(CI®C; ® ..Q Cp).

Property 3.10.Consider Cl =

{{[MBlk’lu‘Blk] [HBIk'MBIk] ['931;{: B’k] ['9731k' B’k]} {HBIk,Msz,ﬁsz, O3} (k=12,..,n) to be

the collection of CBIFEs and S (C{) #0orS (C{) * 1, then we get
lim CBIFPDG(C},Ci,...,C}) = Ci.

dq—+o

Property 3.11.Consider Cl =

{{[MBlk"u‘Blk] [MBIk'MBlk] []9‘Blk’ ‘Blk] []9‘Blk' B’k]} {H‘Blk’uBlk’ﬁBlk’ Q;Ik}} (k= 1:2'---:71) to be
the collection of CBIFEs and S(C’k)thVk—lZ .r+1 and S(C’r’+1)¢1, then

: 51 A1 I 1

(dl'dz'wdr‘drlgr)l_)(o‘o'"”0'+oo)CBIFPDG(C’l, G, ...Ch) = (e1 RCL® ..Q CLyy). ~
Property 3.12. Cons1der Cl =
{{[MBlk’lu‘Blk] [HBIk'MBIk] ['931;{: B’k] ['9731k' B’k]} {HBIk,Msz,ﬁsz, 1;15}} (k=12,..,n) to be
the collection of CBIFEs and S (C ,£+1) #1lor0 then

: 31 A1 51\ — 51 A1 31
(dl,dzwdhdrl:gg(l’llHULM)CBIFPDG(cl, Cl,..,CL) = CBIFPWG(C], €L, ..., CL,,).

MULTI-CRITERIA DECISION MAKING USING PROPOSED AGGREGATION
OPERATORS

Making decisions is a crucial process that allows one to select the most logical option from the
alternatives that are available. By assembling pertinent information and presenting potential
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outcomes, a decision making process might assists us in reaching more deliberate, thoughtful
conclusions. In addition, MCDM have also employed aggregation operators withpriority degrees.
These operators are regarded as an additional helpful and precise tool for ranking the choices that
exist. In order to address aMCDM problem, we employ the aggregation operators with priority
degrees on cubic bipolar intuitionistic fuzzy sets.

Consider X = {x4,%,, ... ¥, }to be the collection of alternatives and P = {p4, p,, ..., pn} be the
collection of parameters or attributes. Strict priority relation is assigned between the parameters.
P1 24, P2 24, P3 - Za,_, Pnshows that parameter p; has high priority than p;,; with priority
degree d;,i € {1,2,..n —1}. Let D = {D4,D,, ..., D} be the assemblage of decision makers and,
Dy 24 Dy 24, D3.. 2y Dy be the priorities assigned between the decision makers. Decision

makers D, provide a matrix D®) = (Bl.(jk))mxnbased on the DMs personal opinions for the

alternative ¥; and parameterp;.

In this part, we put forward the approach of aggregation operators together with thepriority degrees
for resolving the MCDM problem in the layout of cubic bipolar intuitionistic fuzzy sets.

Here is the procedure for solving the MCDM problem.

Step 1. Acquire the decision matrix D®) = (Bi(]fc))an in which all the entries represents a CBIFNs

that the decision makers have assigned based on their perspectives.

Step 2. While making decisions, benefits and costs are the two primary factors that we often taken
into account. In MCDM, success is achieved through maximizing the benefit parameter and
minimizing the cost parameter. Normalization is not required if all the parameters are of same kind.

Using the normalizing formula, we convert the matrix D®) into a normalized matrix as,
F)yc .
N = (G.({‘)) _ (Bl.]. )¢ ; for value of loss parameter
ij mXxn (k) .
B}’ for value of benefit parameter
where (Bi(;())c indicates the complement of Bl.(;().
Step 3.Utilizing one of the aforementioned aggregation operators, accumulate all the independent

CBIF decision matrices of the alternatives vV %) = (Gl.(jk))mxn into a single evaluation matrix.

Step 4. Aggregate the CBIFNSs for each of the alternatives using CBIFPDA (or CBIFPDG) operators.
Step 5. Evaluate the score for each accumulative CBIFNs.

Step 6. The best option was chosen after the alternatives were categorized using the scoring function.
Example 4.1.

Let's say a school management wants to select the expertise teacher for higher secondary and the
management committee made up of three professionals/specialists/Decision makers Dy, D,and D5
with the goal of choosing the best teacher among the four candidates X = {x;, ¥, ¥3, ¥4 }attending the
interview. The specialists think about certain parameters which includes p; =Communication skills,
2 =Pedagogical expertise, p; = Adaptability. In accordance with criteria'spj,j = 1,2,3, the
decision makers generate decision matrices for alternativesx;, i = 1,2,3,4 as shown below:

Step 1. Consider the decision matrices for the decision makers D;,i = 1,2,3 are obtained in the
Tables 4.1, 4.2 and 4.3.

TABLE 4.1.Decision matrix D™ by the decision maker D,

X P1 P2 P3
/P

5, {{[0.16,0.25],[-0.23,—0.18], {{[0.55,0.60],[—0.58,—0.51], {{[0.41,0.49], [—0.48,—0.39],
[0.21,0.30], [—0.25,—0.19]}, [0.25,0.29],[—0.27,—0.21]}, [0.36,0.43],[—0.41, —0.35]},
{0.18,—0.20,0.26,—0.23}}  {0.59,—0.56,0.24,—0.25}}  {0.47,—0.40,0.38, —0.36}}

x, {{[0.35,0.43],[—0.38,—0.29], {{[0.63,0.69],[0.65,—0.57], {{[0.22,0.28],[—0.26,—0.18],
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[0.40,0.49], [—0.46, —0.39]},
{0.38,—0.32,0.45, —0.43}}

[0.25,0.31], [—0.28, —0.22]},
{0.67,—0.59,0.27, —0.23}}

x;  {{[0.54,0.57],[—0.58,—0.51], {{[0.14,0.22],[—0.19, —0.15],
[0.56,0.62], [-0.63,—0.59]}, [0.34,0.43],[—0.38,—0.33]},
{0.55,—0.53,0.60,—0.58}}  {0.18,—0.17,0.41, —0.35}}

x, {{[0.63,0.67],[—0.60,—0.55], {{[0.24,0.30],[—0.28, —0.25],
[0.25,0.29],[—0.26,—0.19]}, [0.46,0.53], [—0.51, —0.49]},
{0.65,—0.58,0.27,—0.23}}  {0.26,—0.27,0.48, —0.50}}
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[0.14,0.23], [—0.15, —0.11]},
{0.25,-0.19,0.21, —0.13}}

{{[0.17,0.26], [-0.31, —0.26],
[0.43,0.51],[—0.53,—0.57]},
{0.23,-0.28,0.45, —0.55}}

{{[0.55,0.60], [-0.57, —0.52],
[0.37,0.39], [—0.32, —0.28]},
{0.57, —0.55,0.38, —0.30}}

TABLE 4.2.Decision matrix D®by the decision maker D,

X #1 V)
/P

P3

5, {{[0.12,0.24],[-0.21,—0.15],
[0.34,0.42], [-0.39, —0.33]},
{0.17,—0.18,0.38, —0.35}}

{{[0.10,0.27], [—0.25, —0.11],
[0.23,0.34], [—0.35,—0.27]},
{0.20,—0.18,0.32, —0.29}}

x, {{[0.45,0.52],[—0.50,—0.43], {{[0.54,0.59],[—0.43,—0.39],

[0.26,0.33], [-0.34,—0.28]}, [0.32,0.37],[—0.38,—0.35]},
{0.48,-0.45,0.29,—0.32}}  {0.58,—0.43,0.33, —0.34}}

x;  {{[0.65,0.69],[—0.68,—0.62], {{[0.47,0.53],[—0.55,—0.48],

[0.23,0.30], [—0.36,—0.31]}, [0.42,0.46], [—0.43,—0.38]},
{0.66,—0.65,0.29,—0.34}}  {0.50,—0.49,0.43, —0.40}}

x, {{[0.36,0.42],[—0.40,—0.33], {{[0.23,0.29],[—0.28,—0.22],

[0.47,0.49], [-0.45, —0.43]},
{0.38,—0.35,0.48, —0.42}}

[0.41,0.44], [-0.45, —0.38]},
{0.25,—0.27,0.43, —0.40}}

{{[0.53,0.58], [-0.52, —0.47],
[0.38,0.41],[—0.37,—0.33]},
{0.55,—0.51,0.40, —0.35}}

{{[0.17,0.26], [-0.30, —0.24],
[0.31,0.39], [—0.35,—0.29]},
{0.21,-0.27,0.34, —0.31}}

{{[0.24,0.28], [—0.29, —0.18],
[0.46,0.53],[—0.55,—0.51]},
{0.26,—-0.20,0.48, —0.53}}

{{[0.38,0.43], [-0.42, —0.40],
[0.51,0.53], [—0.50, —0.45]},
{0.39,-0.41,0.52, —0.49}}

TABLE4.3.Decision matrix D®)by the decision maker Dy

X P1 »2
/P

P3

5 {{[0.15,0.20],[—0.35,—0.30],
[0.45,0.50], [—0.25, —0.20]},
{0.17,—0.32,0.47, —0.22}}

{{[0.47,0.50], [-0.55, —0.49],
[0.42,0.45], [—0.43, —0.37]},
{0.49,—0.51,0.43, —0.40}}

x,  {{[0.37,0.45],[—0.28,—0.23], {{[0.17,0.23],[—0.30,—0.27],

[0.39,0.48], [-0.56,—0.49]}, [0.39,0.43],[—0.31,—0.25]},
{0.40,-0.25,0.45,—-0.53}}  {0.22,—0.29,0.41, —0.27}}

x;  {{[0.10,0.12],[—0.18,—0.15], {{[0.61,0.66], [—0.70,—0.65],

[0.45,0.58], [-0.33,—0.26]}, [0.25,0.29], [—0.10,—0.03]},
{0.11,-0.16,0.55,—0.29}}  {0.63,—0.68,0.27, —0.09}}

xs  {{[0.60,0.63],[—0.54,—0.50], {{[0.14,0.25],[—0.19,—0.16],

[0.10,0.17], [—0.23, —0.19]},
{0.61,—0.52,0.14, —0.20}}

[0.44,0.55], [-0.43, —0.37]},
{0.18,—0.17,0.50, —0.40}}

{{[0.38,0.42], [-0.41,—0.39],
[0.51,0.54], [—0.38, —0.35]},
{0.39,-0.40,0.52, —0.36}}

{{[0.23,0.28], [-0.33,—0.30],
[0.53,0.58], [—0.63, —0.60]},
{0.25,-0.31,0.55,-0.61}}

{{[0.11,0.17], [—0.22, —0.18],
[0.44,0.66], [—0.33,—0.28]},
{0.13,-0.20,0.55, —0.30}}

{{[0.35,0.42], [-0.38,—0.28],
[0.40,0.48], [-0.46, —0.38]},
{0.37,—0.31,0.44, —0.42}}
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Step 2. Normalization is not essential because every parameters are of benefit type.
Step 3. Now, take the priority degrees as (dj,d5, d3) = (1,1,1) and by using the proposed
CBIFPDA aggregationoperator, we accumulate all the independent CBIF decision matrices into a
single evaluation matrix is shown in Table 4.4.
Before that, we find t; j(l),ti j(z) and t; j(S), which has been used in the calculation of CBIFPDA
operator.

0.4900 0.5033 0.5042
t.@ — 0.5092 0.5067 0.4942
Y 0.5050 0.4925 0.5058

0.5075 0.5025 0.4867
0.2417 0.2538 0.2530

.3 0.2601 0.2749 0.2364
Y 0.2626 0.2413 0.2626
0.2512 0.2491 0.2373
TABLE 4.4. Aggregated decision matrix
X P1 P2
/P
x1 {{[0.1475,0.2404],[—-0.2377,—-0.1836], {{[0.4380,0.5092],[—0.4523,—-0.3268],
[0.2677,0.3544],[—0.2926,—0.2337]}, [0.2631,0.3234],[—0.3187,—0.2525]3},
{0.1758,—0.2073,0.3144, —0.2647}} {0.4876,—0.3991,0.2835, —0.2851}}
x*; {{[0.3834,0.4604],[—0.3932,-0.3139], {{[0.5541,0.6138],[—0.5130,—0.4560],
[0.3502,0.4360],[—0.4449,—-0.3768]}, [0.2872,0.3429],[—0.3145,—-0.2639]},
{0.4134,—-0.3404,0.3966,—0.4171}} {0.5964,—0.4832,0.3049, —0.2691}}
3 {{[0.5299,0.5644],[—0.5101, —0.4496], {{[0.3286,0.3983],[—0.3081,—0.2560],
[0.4204,0.4989],[—0.5274,—0.4806]}, [0.3459,0.4149],[—0.3624,—0.3100]},
{0.5403,—0.4702,0.4812,—0.4833}} {0.3622,—0.2785,0.3921, —0.3342}}
¥, {{[0.5618,0.6053],[—0.5258,—-0.4682], {{[0.2236,0.2902],[—0.2650,—0.2262],
[0.2632,0.3126],[—0.3169,—-0.2681]}, [0.4423,0.5051],[—0.4825,—0.4442]3},
{0.5808,—0.4936,0.2902, —0.2866}} {0.2462,—0.2528,0.4678, —0.4593}}

tij(l) —

(SRR S\
e Y
[ S S SN

X/ P P3

3 {{[0.4433,0.5086],[—0.4801, —0.4115], [0.3844,0.4383], [-0.3945, —0.3443]},
{0.4840,—0.4289,0.4034, —0.3572}}

Xy {{[0.2074,0.2743],[—0.2798, —0.2095], [0.2107,0.3034], [-0.2972, —0.2520]},
{0.2388,—0.2246,0.2748,—0.2703}}

X3 {{[0.1822,0.2532],[—0.2890,—0.2216], [0.4399,0.5358], [-0.5107, —0.5181]},
{0.2248,—-0.2419,0.4722,—-0.5135}}

Xy {{[0.4818,0.5347],[—0.4945, —0.4434], [0.4095,0.4376], [-0.3960, —0.3463]},
{0.4998, —0.4678,0.4236, —0.3762}}

Step 4. We now aggregate the above CBIFNs for each parameters p; by the proposed CBIFPDA
operator under the priority degree (p1, p2, #3) = (1,1,1), for that, we have

1 0.4825 0.2510

1 0.5200 0.2708

1 0.5246 0.2667

1 0.5222 0.2605
We get the accumulative decision matrix as provide in Table 4.5.

TABLE 4.5. Accumulative decision matrix

tij =

Parameters CBIF values
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) {{[0.2863,0.3684], [-0.3148, —0.2423], [0.2807,0.3563], [-0.3155, —0.2560]},
{0.3252,—0.2764,0.3167, —0.2845}}

% {{[0.4172,0.4880], [—0.4036, —0.3292], [0.3070,0.3849], [-0.3883, —0.3276]},
{0.4528,—0.3540,0.3475, —0.3559}}

%3 {{[0.4334,0.4812], [—0.4044, —0.3431], [0.3997,0.4777], [-0.4814, —0.4418]},
{0.4531, —0.3654,0.4519, —0.4485}}

% {{[0.4690,0.5199], [-0.4263, —0.3753], [0.3268,0.3779], [-0.3815, —0.3358]},

{0.4892, —0.4026,0.3527, —0.3550}}

Step 5. Compute the score for each CBIF values.
S(x;) = 0.50407
S(x;) = 0.52529
S(x3) = 0.52475
S(x4) = 0.52405

Step 6. We order the alternatives in accordance to the score values as,
Xy > %33> % > ¥,

We conclude that x, is the best alternatives out of all the alternatives.

CONCLUSION :

Here, we focused onthe cubic bipolar intuitionistic fuzzy sets by generalizing theBIFSin this work.
Priority degree theories will facilitate the fusion of large-scale of CBIFdata. Furthermore, a
numerical instance of MCDM in accordance with CBIF set to deal with bipolar uncertainties under
priority degree orders are given.
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